Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 57: e13173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265346

RESUMO

Polystyrene nanoplastics (PS-NPs) are ubiquitous environmental pollutants that can cause oxidative stress in various organs, including the liver. Didymin is a dietary flavanone that displays multiple pharmacological activities. Therefore, the present study evaluated the palliative role of didymin against PS-NPs-induced hepatic damage in rats. Albino rats (n=48) were randomly distributed into 4 groups: control, PS-NPs treated group, PS-NPs + didymin co-administered group, and didymin supplemented group. After 30 days, PS-NPs intoxication lowered the expression of Nrf-2 and anti-oxidant genes [catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR), glutathione-S-transferase (GST), and heme oxygenase-1 (HO-1)], whereas the expression of KEAP1 kelch like ECH associated protein 1 (Keap-1) was increased. PS-NPs exposure also reduced the activities of anti-oxidants enzymes (CAT, SOD, GPx, GSR, GST, GSH, and OH-1), while malondialdehyde (MDA) and reactive oxygen species (ROS) levels were increased. The levels of alanine transaminase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were increased in PS-NPs-exposed rats. Moreover, inflammatory indices [interleukin-1ß (IL-1ß), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2)] were increased in PS-NPs-exposed rats. Furthermore, PS-NPs intoxication increased the expressions of apoptotic markers including Bax and Caspase-3, as well as reducing Bcl-2 expression. The histopathological analysis showed significant damage in PS-NPs-treated rats. However, didymin supplementation ameliorated all the PS-NPs-induced damage in the liver of rats. Therefore, it was concluded that didymin can act as a remedy against PS-NPs-induced liver toxicity due to its anti-apoptotic, anti-oxidant, and anti-inflammatory activities.


Assuntos
Flavonoides , Glicosídeos , Microplásticos , Poliestirenos , Masculino , Animais , Ratos , Proteína 1 Associada a ECH Semelhante a Kelch , Antioxidantes , Fator 2 Relacionado a NF-E2 , Superóxido Dismutase
2.
Braz. j. med. biol. res ; 57: e13173, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1528100

RESUMO

Polystyrene nanoplastics (PS-NPs) are ubiquitous environmental pollutants that can cause oxidative stress in various organs, including the liver. Didymin is a dietary flavanone that displays multiple pharmacological activities. Therefore, the present study evaluated the palliative role of didymin against PS-NPs-induced hepatic damage in rats. Albino rats (n=48) were randomly distributed into 4 groups: control, PS-NPs treated group, PS-NPs + didymin co-administered group, and didymin supplemented group. After 30 days, PS-NPs intoxication lowered the expression of Nrf-2 and anti-oxidant genes [catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR), glutathione-S-transferase (GST), and heme oxygenase-1 (HO-1)], whereas the expression of KEAP1 kelch like ECH associated protein 1 (Keap-1) was increased. PS-NPs exposure also reduced the activities of anti-oxidants enzymes (CAT, SOD, GPx, GSR, GST, GSH, and OH-1), while malondialdehyde (MDA) and reactive oxygen species (ROS) levels were increased. The levels of alanine transaminase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were increased in PS-NPs-exposed rats. Moreover, inflammatory indices [interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2)] were increased in PS-NPs-exposed rats. Furthermore, PS-NPs intoxication increased the expressions of apoptotic markers including Bax and Caspase-3, as well as reducing Bcl-2 expression. The histopathological analysis showed significant damage in PS-NPs-treated rats. However, didymin supplementation ameliorated all the PS-NPs-induced damage in the liver of rats. Therefore, it was concluded that didymin can act as a remedy against PS-NPs-induced liver toxicity due to its anti-apoptotic, anti-oxidant, and anti-inflammatory activities.

3.
Braz. j. biol ; 83: 1-9, 2023. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468875

RESUMO

Cisplatin (CP) is a commonly used, powerful antineoplastic drug, having numerous side effects. Casticin (CAS) is considered as a free radical scavenger and a potent antioxidant. The present research was planned to assess the curative potential of CAS on CP persuaded renal injury in male albino rats. Twenty four male albino rats were distributed into four equal groups. Group-1 was considered as a control group. Animals of Group-2 were injected with 5mg/kg of CP intraperitoneally. Group-3 was co-treated with CAS (50mg/kg) orally and injection of CP (5mg/kg). Group-4 was treated with CAS (50mg/kg) orally throughout the experiment. CP administration substantially reduced the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione S-transferase (GST), glutathione reductase (GSR), glutathione (GSH) content while increased thiobarbituric acid reactive substances (TBARS), and hydrogen peroxide (H2O2) levels. Urea, urinary creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, albumin and creatinine clearance was significantly reduced in CP treated group. The results demonstrated that CP significantly increased the inflammation indicators including nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activity and histopathological damages. However, the administration of CAS displayed a palliative effect against CP-generated renal toxicity and recovered all parameters by bringing them to a normal level. These results revealed that the CAS is an effective compound having the curative potential to counter the CP-induced renal damage.


A cisplatina (CP) é uma droga antineoplásica poderosa, comumente usada, com vários efeitos colaterais. Casticin (CAS) é considerado um eliminador de radicais livres e um potente antioxidante. A presente pesquisa foi planejada para avaliar o potencial curativo da CAS em lesão renal induzida por PC em ratos albinos machos. Vinte e quatro ratos albinos machos foram distribuídos em quatro grupos iguais. O Grupo 1 foi considerado grupo controle. Os animais do Grupo 2 foram injetados com 5 mg / kg de PB por via intraperitoneal. O Grupo 3 foi cotratado com CAS (50 mg / kg) por via oral e injeção de CP (5 mg / kg). O Grupo 4 foi tratado com CAS (50 mg / kg) por via oral durante todo o experimento. A administração de CP reduziu substancialmente as atividades de catalase (CAT), superóxido dismutase (SOD), peroxidase (POD), glutationa S-transferase (GST), glutationa redutase (GSR), glutationa (GSH), enquanto aumentou as substâncias reativas ao ácido tiobarbitúrico (TBARS) e níveis de peróxido de hidrogênio (H2O2). Os níveis de ureia, creatinina urinária, urobilinogênio, proteínas urinárias, molécula 1 de lesão renal (KIM-1) e lipocalina associada à gelatinase de neutrófilos (NGAL) aumentaram substancialmente. Em contraste, a albumina e a depuração da creatinina foram significativamente reduzidas no grupo tratado com PC. Os resultados demonstraram que a CP aumentou significativamente os indicadores de inflamação, incluindo fator nuclear kappa-B (NF-κB), fator de necrose tumoral-α (TNF-α), interleucina-1β (IL-1β), interleucina-6 (IL-6) níveis e atividade da ciclooxigenase-2 (COX-2) e danos histopatológicos. No entanto, a administração de CAS apresentou um efeito paliativo contra a toxicidade renal gerada por CP e recuperou todos os parâmetros, trazendo-os a um nível normal. Estes resultados revelaram que o CAS é um composto eficaz com potencial curativo para combater o dano renal induzido por CP.


Assuntos
Masculino , Animais , Ratos , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Rim/lesões , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/farmacologia , Ratos Endogâmicos
4.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469090

RESUMO

Abstract Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-B), tumor necrosis factor- (TNF-), Interleukin-1 (IL-1), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.


Resumo O timerosal é um composto organomercurial, utilizado na preparação de imunoglobulina intramuscular, antivenenos, tintas de tatuagem, antígenos de teste cutâneo, produtos nasais, gotas oftálmicas e vacinas como conservante. Na maioria das espécies animais e nos humanos, o rim é um dos principais locais de deposição de compostos de mercúrio e órgãos-alvo de toxicidade. Assim, a presente pesquisa teve como objetivo avaliar a nefrotoxicidade induzida pelo timerosal em ratos machos. Vinte e quatro ratos albinos machos adultos foram categorizados em quatro grupos. O primeiro grupo era um grupo de controle. Ratos do Grupo II, Grupo III e Grupo IV receberam 0,5µg / kg, 10µg / kg e 50µg / kg de timerosal uma vez ao dia, respectivamente. A administração de timerosal diminuiu significativamente as atividades de catalase (CAT), superóxido dismutase (SOD), peroxidase (POD), glutationa redutase (GR), glutationa (GSH) e conteúdo de proteína, enquanto aumentou as substâncias reativas ao ácido tiobarbitúrico (TBARS) e peróxido de hidrogênio (H2O2) níveis dependentes da dose. Os níveis de nitrogênio ureico no sangue (BUN), creatinina, urobilinogênio, proteínas urinárias, molécula de lesão renal-1 (KIM-1) e lipocalina associada à gelatinase de neutrófilos (NGAL) aumentaram substancialmente. Em contraste, a albumina urinária e a depuração da creatinina foram reduzidas de forma dependente da dose nos grupos tratados com timerosal. Os resultados demonstraram que o timerosal aumentou significativamente os indicadores de inflamação, incluindo fator nuclear kappaB (NF-B), fator de necrose tumoral- (TNF-), interleucina-1 (IL-1), níveis de interleucina-6 (IL-6) e atividades da ciclooxigenase-2 (COX-2), DNA e danos histopatológicos dependentes da dose. Portanto, os presentes achados verificaram que o timerosal exerceu nefrotoxicidade em ratos albinos machos.

5.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469091

RESUMO

Abstract Cisplatin (CP) is a commonly used, powerful antineoplastic drug, having numerous side effects. Casticin (CAS) is considered as a free radical scavenger and a potent antioxidant. The present research was planned to assess the curative potential of CAS on CP persuaded renal injury in male albino rats. Twenty four male albino rats were distributed into four equal groups. Group-1 was considered as a control group. Animals of Group-2 were injected with 5mg/kg of CP intraperitoneally. Group-3 was co-treated with CAS (50mg/kg) orally and injection of CP (5mg/kg). Group-4 was treated with CAS (50mg/kg) orally throughout the experiment. CP administration substantially reduced the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione S-transferase (GST), glutathione reductase (GSR), glutathione (GSH) content while increased thiobarbituric acid reactive substances (TBARS), and hydrogen peroxide (H2O2) levels. Urea, urinary creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, albumin and creatinine clearance was significantly reduced in CP treated group. The results demonstrated that CP significantly increased the inflammation indicators including nuclear factor kappa-B (NF-B), tumor necrosis factor- (TNF-), Interleukin-1 (IL-1), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activity and histopathological damages. However, the administration of CAS displayed a palliative effect against CP-generated renal toxicity and recovered all parameters by bringing them to a normal level. These results revealed that the CAS is an effective compound having the curative potential to counter the CP-induced renal damage.


Resumo A cisplatina (CP) é uma droga antineoplásica poderosa, comumente usada, com vários efeitos colaterais. Casticin (CAS) é considerado um eliminador de radicais livres e um potente antioxidante. A presente pesquisa foi planejada para avaliar o potencial curativo da CAS em lesão renal induzida por PC em ratos albinos machos. Vinte e quatro ratos albinos machos foram distribuídos em quatro grupos iguais. O Grupo 1 foi considerado grupo controle. Os animais do Grupo 2 foram injetados com 5 mg / kg de PB por via intraperitoneal. O Grupo 3 foi cotratado com CAS (50 mg / kg) por via oral e injeção de CP (5 mg / kg). O Grupo 4 foi tratado com CAS (50 mg / kg) por via oral durante todo o experimento. A administração de CP reduziu substancialmente as atividades de catalase (CAT), superóxido dismutase (SOD), peroxidase (POD), glutationa S-transferase (GST), glutationa redutase (GSR), glutationa (GSH), enquanto aumentou as substâncias reativas ao ácido tiobarbitúrico (TBARS) e níveis de peróxido de hidrogênio (H2O2). Os níveis de ureia, creatinina urinária, urobilinogênio, proteínas urinárias, molécula 1 de lesão renal (KIM-1) e lipocalina associada à gelatinase de neutrófilos (NGAL) aumentaram substancialmente. Em contraste, a albumina e a depuração da creatinina foram significativamente reduzidas no grupo tratado com PC. Os resultados demonstraram que a CP aumentou significativamente os indicadores de inflamação, incluindo fator nuclear kappa-B (NF-B), fator de necrose tumoral- (TNF-), interleucina-1 (IL-1), interleucina-6 (IL-6) níveis e atividade da ciclooxigenase-2 (COX-2) e danos histopatológicos. No entanto, a administração de CAS apresentou um efeito paliativo contra a toxicidade renal gerada por CP e recuperou todos os parâmetros, trazendo-os a um nível normal. Estes resultados revelaram que o CAS é um composto eficaz com potencial curativo para combater o dano renal induzido por CP.

6.
Cryo Letters ; 43(2): 91-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36626150

RESUMO

BACKGROUND: The discrepancy between the endogenous antioxidants concentrations and free radicals results in oxidative stress and cellular injury. OBJECTIVE: To appraise the usefulness of Rosemarinus officinalis (RO) aqueous extract in protecting buffalo spermatozoa during freezing / thawing process. MATERIALS AND METHODS: Qualifying ejaculates from four well-restrained bulls were evaluated initially and then diluted in a freezing medium supplemented with RO-0.0, RO-0.5 %, RO-1.0%, RO-2.0 %, and RO-4.0 %, cooled to 4 degree C in 2 h, equilibrated for 4 h at 4 degree C, packed in straws, and cryopreserved, and thawed at 37 degree C for 30 s followed by evaluation. RESULTS: We found that freezing medium supplemented with RO-2.0 % improves progressive motility (%) compared to the control. Similarly, a lower rate of apoptosis-like changes (%) was recorded with RO-4.0 % than the control, RO-0.5 % and RO-1.0 %. This response was accompanied by an increment in viable spermatozoa. Semen samples supplemented with RO-2.0 % and RO-4.0 % displayed higher TAC (total antioxidant capacity, uM per L) and ATP (nmol/million) content than the control. In addition, semen samples supplemented with RO-2.0 % displayed lower concentrations of ROS (reactive oxygen species, 104 RLU/20 min/25 million) than the control and RO-0.05 %. Also LPO (lipid peroxidation, uM per L) with RO-2.0 % and RO-4.0 % was lower than the control. CONCLUSION: The inclusion of rosemary aqueous extract ameliorates motility features, structural and functional parameters, viability, TAC and ATP content of bull sperm. Conversely, the inclusion of rosemary aqueous extract alleviates apoptosis-like changes, ROS and LPO in comparison to the control. Further studies are required to determine the mechanism of action of rosemary aqueous extract in ameliorating semen quality and fertility of buffalo spermatozoa. doi.org/10.54680/fr22210110712.


Assuntos
Rosmarinus , Preservação do Sêmen , Masculino , Animais , Congelamento , Rosmarinus/química , Búfalos/fisiologia , Análise do Sêmen , Espécies Reativas de Oxigênio , Criopreservação/veterinária , Criopreservação/métodos , Motilidade dos Espermatozoides , Sementes , Espermatozoides/fisiologia , Antioxidantes/farmacologia , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Extratos Vegetais/farmacologia , Trifosfato de Adenosina
7.
Braz J Biol ; 83: e242942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34468508

RESUMO

Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.


Assuntos
Estresse Oxidativo , Timerosal , Animais , Peróxido de Hidrogênio/metabolismo , Rim , Masculino , Ratos , Superóxido Dismutase/metabolismo , Timerosal/metabolismo , Timerosal/toxicidade
8.
Braz J Biol ; 83: e243438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34468509

RESUMO

Cisplatin (CP) is a commonly used, powerful antineoplastic drug, having numerous side effects. Casticin (CAS) is considered as a free radical scavenger and a potent antioxidant. The present research was planned to assess the curative potential of CAS on CP persuaded renal injury in male albino rats. Twenty four male albino rats were distributed into four equal groups. Group-1 was considered as a control group. Animals of Group-2 were injected with 5mg/kg of CP intraperitoneally. Group-3 was co-treated with CAS (50mg/kg) orally and injection of CP (5mg/kg). Group-4 was treated with CAS (50mg/kg) orally throughout the experiment. CP administration substantially reduced the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione S-transferase (GST), glutathione reductase (GSR), glutathione (GSH) content while increased thiobarbituric acid reactive substances (TBARS), and hydrogen peroxide (H2O2) levels. Urea, urinary creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, albumin and creatinine clearance was significantly reduced in CP treated group. The results demonstrated that CP significantly increased the inflammation indicators including nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activity and histopathological damages. However, the administration of CAS displayed a palliative effect against CP-generated renal toxicity and recovered all parameters by bringing them to a normal level. These results revealed that the CAS is an effective compound having the curative potential to counter the CP-induced renal damage.


Assuntos
Cisplatino , Peróxido de Hidrogênio , Animais , Antioxidantes , Cisplatino/toxicidade , Flavonoides , Masculino , Estresse Oxidativo , Ratos , Superóxido Dismutase/metabolismo
9.
Folia Biol (Praha) ; 66(3): 91-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33069188

RESUMO

The most recent genome-editing system called CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat system with associated protein 9-nuclease) was employed to delete four non-essential genes (i.e., Caeco1, Caidh1, Carom2, and Cataf10) individually to establish their gene functionality annotations in pathogen Candida albicans. The biological roles of these genes were investigated with respect to the cell wall integrity and biogenesis, calcium/calcineurin pathways, susceptibility of mutants towards temperature, drugs and salts. All the mutants showed increased vulnerability compared to the wild-type background strain towards the cell wall-perturbing agents, (antifungal) drugs and salts. All the mutants also exhibited repressed and defective hyphal growth and smaller colony size than control CA14. The cell cycle of all the mutants decreased enormously except for those with Carom2 deletion. The budding index and budding size also increased for all mutants with altered bud shape. The disposition of the mutants towards cell wall-perturbing enzymes disclosed lower survival and more rapid cell wall lysis events than in wild types. The pathogenicity and virulence of the mutants was checked by adhesion assay, and strains lacking rom2 and eco1 were found to possess the least adhesion capacity, which is synonymous to their decreased pathogenicity and virulence.


Assuntos
Candida albicans/fisiologia , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Acetiltransferases/deficiência , Acetiltransferases/genética , Acetiltransferases/fisiologia , Antifúngicos/farmacologia , Sistemas CRISPR-Cas , Cálcio/fisiologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/patogenicidade , Cátions/farmacologia , Adesão Celular , Ciclo Celular , Parede Celular/efeitos dos fármacos , Quitinases/farmacologia , Dano ao DNA , Proteínas Fúngicas/genética , Deleção de Genes , Glucana Endo-1,3-beta-D-Glucosidase/farmacologia , Hifas/crescimento & desenvolvimento , Isocitrato Desidrogenase/deficiência , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/fisiologia , Fases de Leitura Aberta , Reprodução Assexuada , Fatores Associados à Proteína de Ligação a TATA/deficiência , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Virulência/genética
10.
Hum Exp Toxicol ; 39(11): 1565-1581, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32573270

RESUMO

Nickel nanoparticles (Ni-NPs) have been widely used in various industries related to electronics, ceramics, textiles, and nanomedicine. Ambient and occupational exposure to Ni-NPs may bring about potential detrimental effects on animals and humans. Thus, there is a growing effort to identify compounds that can ameliorate NPs-associated pathophysiologies. The present study examined Cinnamomum cassia (C. cassia) bark extracts (CMBE) for its ameliorative activity against Ni-NPs-induced pathophysiological and histopathological alterations in male Sprague Dawley rats. The biochemical analyses revealed that dosing rats with Ni-NPs at 10 mg/kg/body weight (b.w.) significantly altered the normal structural and biochemical adaptations in the liver and kidney. Conversely, supplementations with CMBE at different doses (225, 200, and 175 mg/kg/b.w. of rat) ameliorated the altered blood biochemistry and reduced the biomarkers of liver and kidney function considerably (p < 0.05) in a dose-dependent manner. However, the best results were at 225 mg/kg/b.w. of rat. The study provided preliminary information about the protective effect of C. cassia against Ni-NPs indicated liver and kidney damages. Future investigations are needed to explore C. cassia mechanism of action and isolation of single constituents of C. cassia to assess their pharmaceutical importance accordingly.


Assuntos
Cinnamomum aromaticum , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Catalase/metabolismo , Glutationa/metabolismo , Rim/metabolismo , Rim/patologia , Peróxidos Lipídicos/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Fitoterapia , Casca de Planta , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley
11.
Acta Virol ; 62(1): 3-15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29521098

RESUMO

Recently, medicinal plants are achieving great interest because of their use in ethno medicine treatment of different common diseases and also other medicinal assertions are now reinforced by comprehensive scientific evidence. Almost 82 research articles and abstracts published, so far, were screened for evaluating antiviral efficiency of various plant samples and 23 different plants were found to be traditionally used against Newcastle disease (ND). ND is a most transmissible viral disease of avian species caused by virulent strain of Avula virus from the Paramyxoviridae family. The first epidemic of ND was perceived in Java, Indonesia and England in year 1926. ND causes great economic loses to the commercial poultry farmers around the world. Medicinal plants are traditionally used in the control of viral or other diseases and infections. Plants have been found useful in treating many microbial diseases in man and animals caused by bacteria and viruses. The ability to synthesize compounds retaining antiviral potential by secondary metabolism makes plants a vital source of pharmaceutical and therapeutic products, which can reduce chemotherapeutic load in birds. Current studies signify that the natural products posses a rich potential source of new antiviral compounds. Further ethnobotanical studies and laboratory investigations are established to identify species having potential to improve ND control.


Assuntos
Galinhas , Doença de Newcastle/tratamento farmacológico , Vírus da Doença de Newcastle/patogenicidade , Fitoterapia/veterinária , Plantas Medicinais , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...